近日,统计学院青年教师闫懋博博士与中国人民大学田茂再教授合作撰写的学术论文《基于随机化适应性Lasso的高维变量选择》在《统计研究》2021年第1期上发表。该刊系我校A1类期刊。
Lasso等惩罚变量选择方法选入模型的变量数受到样本量限制。文献中已有研究变量系数显著性的方法舍弃了未选入模型的变量含有的信息。作者在变量数大于样本量即p>n的高维情况下,采用随机化bootstrap方法获得变量权重,在计算适应性Lasso时构建选择事件的条件分布并剔除系数不显著的变量,以得到最终估计结果。文章的创新点在于,提出的方法突破了适应性Lasso可选变量数的限制,当观测数据含有大量干扰变量时能够有效地识别出真实变量与干扰变量。与现有的惩罚变量选择方法相比,多种情境下的模拟研究展示了所提方法在上述两个问题中的优越性。实证研究中对NCI-60癌症细胞系数据进行了分析,结果较以往文献有明显改善。
(供稿审核人:李国峰)